AI Paper English F.o.R.

人工知能(AI)に関する論文を英語リーディング教本のFrame of Reference(F.o.R.)を使いこなして読むブログです。

GAN

GAN | Abstract 第7文

GAN

Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples. Ian J. Goodfellow, et al., "Generative Adversarial Networks" https://arxiv.org/abs/1406.2661 2つのモデルが競い…

GAN | Abstract 第6文

GAN

There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Ian J. Goodfellow, et al., "Generative Adversarial Networks" https://arxiv.org/abs/1406.2661 2つのモデルが競…

GAN | Abstract 第5文

GAN

In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. Ian J. Goodfellow, et al., "Generative Adversarial Networks" https://arxiv.org/abs/1406.2661 2つのモデルが競い合うよう…

GAN | Abstract 第4文

GAN

In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. Ian J. Goodfellow, et al., "Generative Adversarial Networks" https://arxiv.org/abs/1406.…

GAN | Abstract 第3文

GAN

This framework corresponds to a minimax two-player game. Ian J. Goodfellow, et al., "Generative Adversarial Networks" https://arxiv.org/abs/1406.2661 2つのモデルが競い合うように学習することが特徴的なGANの論文の"Generative Adversarial Netwo…

GAN | Abstract 第2文

GAN

The training procedure for G is to maximize the probability of D making a mistake. Ian J. Goodfellow, et al., "Generative Adversarial Networks" https://arxiv.org/abs/1406.2661 2つのモデルが競い合うように学習することが特徴的なGANの論文の"Ge…

GAN | Abstract 第1文

GAN

We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the …